

Doc. 300.3.1/1

External Evaluation Report

(Programmatic within the framework of Departmental Evaluation)

Date: 2025-05-18

- **Higher Education Institution:**
European University Cyprus
- **Town:** Nicosia
- **School/Faculty:** School/Faculty
- **Department:** Computer Science and Engineering
- **Programme(s) of study - Name (Duration, ECTS, Cycle)**
Programme 1 – Bachelor

In Greek:

Επιστήμη των Υπολογιστών (4 ακαδημαϊκά έτη, 240 ECTS, Πτυχίο(BSc))

In English:

Computer Science (4 academic years, 240 ECTS, Bachelor(BSc))

Language(s) of instruction: Language(s)

Programme 2 – Master

In Greek:

Επιστήμη των Υπολογιστών (18 μήνες, 90 ECTS, Μάστερ(MSc))

In English:

Computer Science (18 months, 90 ECTS, Master(MSc))

Language(s) of instruction: Language(s)

Programme 3 – Doctorate

In Greek:

Επιστήμη των Υπολογιστών (3 ακαδημαϊκά έτη, 180 ECTS, Διδακτορικό(PhD))

In English:

Computer Science (3 academic years, 180 ECTS, Doctorate(PhD))

Language(s) of instruction: Language(s)

The present document has been prepared within the framework of the authority and competencies of the Cyprus Agency of Quality Assurance and Accreditation in Higher Education, according to the provisions of the “Quality Assurance and Accreditation of Higher Education and the Establishment and Operation of an Agency on Related Matters Laws” of 2015 to 2021 [L.136(I)/2015 – L.132(I)/2021].

A. Introduction

This part includes basic information regarding the onsite visit.

The onsite visit to the Department of Compute Science and Engineering (henceforth: “the Department”) at the European University Cyprus in Nicosia took place on May 15 and May 16, 2025, during which the External Evaluation Committee (EEC) was accompanied by Ms. Natasia Kazakeou from the Cyprus Agency of Quality Assurance and Accreditation.

During the site visit, the EEC met, and had a series of constructive discussions, with members of the governing board of the University, and with members of the teaching and administration staff who assisted in the presentation and delivery of the programs of studies.

In particular, from among university, school, and Department management, the EEC met with L Symeou (Vice Rector of Academic Affairs), M. Vryonides (Vice Rector of Research and External Affairs), P Papagiorgis (Dean of the school of sciences), L. Voniati (Internal Quality Assurance Committee), M. Appiou-Nikiforou (Acting chairperson of the Department), Y. Danidou (Vice-chairperson of the Department), A Grondoudis (Programme coordinator, BSc in Computer Science), V. Papadopoulou-Lesta (Programme Coordinator, MSc and PhD in Computer Science).

Additionally, the ECC also met with the following teaching staff from the Department: K. Papanikoulaou, C. Dimopoulos, C. Iordanou, K. Katzis, D. Hadjiloucas, P. Leng-Cheng,

The ECC also met with E. Markantoni (Director, Office of Student Affairs), M. Georgiou-Mathaiou (Admissions coordinator, Office of Admissions), C. Kolatsi (International Student Advisor, Department of Enrolment), M. Georgiou (Network Operations Manager) and T. Tzitzimbourounis (Head Librarian).

From among the strong network of industrial partners of EUC, the ECC met with A. Loutsios (Vice-chairperson of the Cyprus Computer Science Society), Georg Malekkos (CEO and software innovation architect, PowerSoft Computer Solutions), and Constantinos Loizou (CEO & Founder, EMBIO Diagnostics Ltd.)

The EEC wishes to express its gratitude to these staff members and external stakeholders for having made themselves available, and for engaging in intense, deep, and constructive discussions and exchanges.

Finally, the EEC had the privilege to meet with a large set of students and graduates from the BSc, MSc, and PhD programmes — respectively. This provided us with — in addition to insights on the programme structure and “academic” attractiveness — valuable insights in the experience of being a student in a programme in the Department at EUC.

The EEC does not wish to bury the lead here: the students affirmed — and thus confirmed our initial impression — that the most valuable asset that the Department possesses is the teaching staff in the Department, whose energy, availability, and commitment to excellence in education was the overriding theme of the site visit.

With reference to the initially proposed agenda for the site-visit, the ECC requested the following changes be made:

- *That the meeting with all teaching staff in the MSc and PhD programmes be restricted to a meeting with only current PhD advisors.*
- *That a dedicated meeting be programmed with the “Quality Assurance Team” of the Department.*

The EEC wishes to express its gratitude to EUC for having accommodated these last-minute changes. In particular, the EEC wishes to thank the student representative in the Quality Assurance Team for making himself available at very short notice and in spite of his previous commitment.

Two days prior to the site visit, and by way of the Ms. Kazakaiu from CYQAA, the EEC shared an extensive list of requested information and documents with the EUC. The EEC wishes to express its gratitude to:

- *The presenters during the sessions of site-visit, who had made last-minute changes to their presentations, to provide us with the information requested*
- *The entire “back-end” administrative staff — most of whom we likely didn’t get to meet and thank in person, but who worked tirelessly behind the scenes to extract data, and provide the documents and information that we requested in a timely manner to produce this report, as well as who ensured the logistics (and caffeination) of our on-site visit. A final request will be to convey our gratitude for their efforts to them.*

The EEC was granted access to all the information, and to all the people/stakeholders, that we requested, from EUC. All personnel — from university and school leadership, through to the administrative and technical personnel, and to the faculty members in the Department — were forthcoming, positive, and actively and constructively engaged with the ECC throughout the site visit. The students and graduates, from the programmes being assessed, were thoughtful, respectful, and — again, without burying the lead — evidence of the quality of education that the students in the Department receive.

The EEC wishes to thank both the officers from the CYQAA and the personnel from the Department for excellent organisational arrangements of the site visit.

B. External Evaluation Committee (EEC)

Name	Position	University
Thomas Heide Clausen	Professor (Chair)	Ecole Polytechnique
Damal K. Arvind	Professor (Member)	University of Edinburgh
Nik Bessis	Professor (Member)	Edge Hill University
Yiannis Zapitis	Professional Body Representative (Member)	Cyprus Scientific and Technical Chamber (ETEK)
Paraskevas Kyriacou	PhD student (Student Member)	University of Cyprus
Name	Position	University

C. Guidelines on content and structure of the report

- *The external evaluation report follows the structure of assessment areas.*
- *At the beginning of each assessment area there is a box presenting:*
 - (a) sub-areas*
 - (b) standards which are relevant to the European Standards and Guidelines (ESG)*
 - (c) some questions that EEC may find useful.*
- *The questions aim at facilitating the understanding of each assessment area and at illustrating the range of topics covered by the standards.*
- *Under each assessment area it is important to provide information regarding the compliance with the requirements of each sub-area. In particular, the following must be included:*

Findings

A short description of the situation in the Higher Education Institution (HEI), based on elements from the application for external evaluation and on findings from the onsite visit.

Strengths

A list of strengths, e.g. examples of good practices, achievements, innovative solutions etc.

Areas of improvement and recommendations

A list of problem areas to be dealt with, followed by or linked to the recommendations of how to improve the situation.

- *The EEC should state the compliance for each sub-area (Non-compliant, Partially compliant, Compliant), which must be in agreement with everything stated in the report. It is pointed out that, in the case of standards that cannot be applied due to the status of the HEI and/or of the programme of study, N/A (= Not Applicable) should be noted.*
- *The EEC should state the conclusions and final remarks regarding each programme of study as a whole.*
- *The report may also address other issues which the EEC finds relevant.*

1. Study programme and study programme's design and development

(ESG 1.1, 1.2, 1.7, 1.8, 1.9)

Sub-areas

1. Policy for quality assurance
2. Design, approval, on-going monitoring and review
3. Public information
4. Information management

1. Policy for quality assurance

Standards

- *Policy for quality assurance of the programme of study:*
 - *has a formal status and is publicly available*
 - *supports the organisation of the quality assurance system through appropriate structures, regulations and processes*
 - *supports teaching, administrative staff and students to take on their responsibilities in quality assurance*
 - *ensures academic integrity and freedom and is vigilant against academic fraud*
 - *guards against intolerance of any kind or discrimination against the students or staff*
 - *supports the involvement of external stakeholders*

2. Design, approval, on-going monitoring and review

Standards

- *The programme of study:*
 - *is designed with overall programme objectives that are in line with the institutional strategy and have explicit intended learning outcomes*
 - *is designed by involving students and other stakeholders*
 - *benefits from external expertise*
 - *reflects the four purposes of higher education of the Council of Europe (preparation for sustainable employment, personal development, preparation for life as active citizens in democratic societies, the development and maintenance, through teaching, learning and research, of a broad, advanced knowledge base)*
 - *is designed so that it enables smooth student progression*
 - *is designed so that the exams' and assignments' content corresponds to the level of the programme and the number of ECTS*
 - *defines the expected student workload in ECTS*
 - *includes well-structured placement opportunities where appropriate*
 - *is subject to a formal institutional approval process*
 - *results in a qualification that is clearly specified and communicated, and refers to the correct level of the National Qualifications Framework for Higher Education and, consequently, to the Framework for Qualifications of the European Higher Education Area*
 - *is regularly monitored in the light of the latest research in the given discipline, thus ensuring that the programme is up-to-date*
 - *is periodically reviewed so that it takes into account the changing needs of society, the students' workload, progression and completion, the effectiveness of procedures for assessment of students, student expectations, needs and satisfaction in relation to the programme*
 - *is reviewed and revised regularly involving students and other stakeholders*

3. Public information

Standards

- *Regarding the programme of study, clear, accurate, up-to date and readily accessible information is published about:*
 - *selection criteria*
 - *intended learning outcomes*
 - *qualification awarded*
 - *teaching, learning and assessment procedures*
 - *pass rates*
 - *learning opportunities available to the students*
 - *graduate employment information*

4. Information management

Standards

- *Information for the effective management of the programme of study is collected, monitored and analysed:*
 - *key performance indicators*
 - *profile of the student population*
 - *student progression, success and drop-out rates*
 - *students' satisfaction with their programmes*
 - *learning resources and student support available*
 - *career paths of graduates*
- *Students and staff are involved in providing and analysing information and planning follow-up activities.*

You may also consider the following questions:

- *What is the procedure for quality assurance of the programme and who is involved?*
- *Who is involved in the study programme's design and development (launching, changing, internal evaluation) and what is taken into account (strategies, the needs of society, etc.)?*
- *How/to what extent are students themselves involved in the development of the content of their studies?*
- *Please evaluate a) whether the study programme remains current and consistent with developments in society (labour market, digital technologies, etc.), and b) whether the content and objectives of the study programme are in accordance with each other?*
- *Do the content and the delivery of the programme correspond to the European Qualifications Framework (EQF)?*
- *How is coherence of the study programme ensured, i.e., logical sequence and coherence of courses? How are substantial overlaps between courses avoided? How is it ensured that the teaching staff is aware of the content and outputs of their colleagues' work within the same study programme?*
- *How does the study programme support development of the learners' general competencies (including digital literacy, foreign language skills, entrepreneurship, communication and teamwork skills)?*
- *What are the scope and objectives of the foundation courses in the study programme (where appropriate)? What are the pass rates?*
- *How long does it take a student on average to graduate? Is the graduation rate for the study programme analogous to other European programmes with similar content? What is the pass rate per course/semester?*
- ***How is it ensured that the actual student workload is in accordance with the workload expressed by ECTS?***
- *What are the opportunities for international students to participate in the study programme (courses/modules taught in a foreign language)?*
- *Is information related to the programme of study publicly available?*
- *How is the HEI evaluating the success of its graduates in the labor market? What is the feedback from graduates of the study programme on their employment and/or continuation of studies?*
- *Have the results of student feedback been analysed and taken into account, and how (e.g., when planning in-service training for the teaching staff)?*
- *What are the reasons for dropping out (voluntary withdrawal)? What has been done to reduce the number of such students?*

Findings

A short description of the situation in the Higher Education Institution (HEI), based on elements from the application for external evaluation and on findings from the onsite visit.

Findings for Bachelor

- The Bachelors programme is taught by a highly committed, dedicated, and enthusiastic team of faculty members, who are highly acclaimed by the students for their pedagogical qualities and availability both inside and outside normal working hours.
- The programme is the “flagship programme” for the Department, and is taught in-person and in English.
- Graduates from the programme are highly sought after by employers.
- The Bachelors programme respects international guidelines regarding volume, scope, content, and level, and is aligned with the IEEE/ACM recommendations for undergraduate computer science programs.
- The programme is in Computer Science with no minors — though two elective courses can be taken.
- Information about the structure of the programme was clear and communicated to prospective students — however, the details of each course (detailed lesson plan/syllabus, or even an abstract beyond the course title) is not publicly available on-line.
- The detailed syllabus is available online for each course, with procedures in place to update it at the start of the course. The students are assessed on their performance in assignments, participation in the class, and final exams in each course.
- The programme has been run successfully since the inception of EUC in 2007, with minimal changes in content and structure. Since the previous assessment in 2020, it is particularly noted that the recommendations of the then EEC (with which the current EEC concurs) have not been reflected through changes in the Programme.
- The programme is being reviewed following the EUCs Programme Evolution Review (PER). this PER can — in principle — be triggered at any time (e.g., in response to a suggestion from a student, from the Industrial Advisory Board, or from a faculty member), it is in practice run only in preparation for the CYQAA accreditation audits.
- Certain courses (e.g., CSE305) have over the years evolved to be a collection of disparate topics not necessarily related to the title of the course
- Other courses contain topics which are of limited relevance
- Other topics, relevant in 2025, are not (adequately) covered in the programme.
- Senior Projects are, in majority, supervised by part-time instructors (STP, SC, or adjuncts)

Findings for Master

- The programme is a conversion program, affording undergraduates with a non-CS background to become CS professionals
- The programme offers a comprehensive course curriculum for semester 1 and 2, and two options for the 3rd semester: either two elective courses, or a “research project”
- The student uptake is curiously low for a programme that is intellectually stimulating, in an attractive location, taught in English, closely related to industrial needs, and only a short 2h plane-ride from major population centres.

Findings for Doctorate

- The EEC notes that this was the third programme — after the BSc and MSc — which was presented as having as objectives “broad knowledge”

- The programme is presented in conformance with the local regulations for doctoral programmes — however in a way that appears similar to the US-style PhD which has a considerable component of “coursework” followed by a “comprehensive” (or “qualifying”) exam, prior to the formulation of the thesis proposal. Yet, when looking at the coursework proposed, it appears as an American “PhD Light” — which the programme director assured the EEC was not the case.
- Regulations prescribe that main PhD supervisors should be at least at the seniority of an assistant professors, with lecturers being allowed as co-supervisors.
- While there is no formal training for PhD supervisors, the department seems to have a “mentor” system such that when a less experienced PhD supervisors experiences a difficulty, s/he get support and guidance from a senior member.
- The PhD student - at the end of their studies - defends their thesis before a jury composed of both internal and external members, none of whom were involved in the PhD supervision.
- PhD students and PhD supervisors reported that the modus operandi of their collaborations generally were good, though not formalised.
- Some PhD students are receiving fellowships, others are working part-time, and yet others are self-funding their PhD.

Strengths

A list of strengths, e.g. examples of good practices, achievements, innovative solutions etc.

Strengths for Bachelor

- Very committed, energetic, dedicated teaching staff
- High employability of graduates
- High satisfaction by students with the programme

Strengths for Master

- Very committed, energetic, dedicated teaching staff
- One student described the programme as “life changing” due to the ability to transform a non-CS to a CS degree.
- The EEC heard testimony of an impressive availability of faculty members to assist part-time students outside of normal class hours - including during the weekends.

Strengths for Doctorate

- Very committed, energetic, dedicated teaching staff
- Strong collegiality and support among PhD supervisors
- Satisfaction among the students and graduates from the programme with the pedagogical and scientific content

Areas of improvement and recommendations

A list of problem areas to be dealt with, followed by or linked to the recommendations of how to improve the situation.

Areas of improvement and recommendations for Bachelor

- The EEC recommends that the quality assurance process be more explicit, documented, and available to students, faculty, and the public alike.
- Whereas the EEC recognises that the programme is successful, in order for it to continue to be, it recommends that the programme be given a thorough review, in view of (i) identifying courses that have become an aggregation of

disparate topics, (ii) identify courses whose relevances have decreased in view of the progress of the field, and (iii) identify “hot topics” not presently covered by the programme.

- While the EEC recognises that revising an accredited programme is subject to strict constraints and rules, and therefore is perceived as a herculean (and/or overly bureaucratic) task, the EEC nonetheless observes that the field of computer science moves so rapidly that agility is needed to maintain a programme such that it equips its graduates with the skills that employers are needing (and — of significant importance — therefore also maintaining the programme economically profitable to offer). To this end, the EEC recommends that the department investigates ways of achieving this degree of agility while remaining in strict conformance with conditions of accreditation. Although the EEC does not pretend to possess any “magic formula” for how this can be done, we offer the following reflections to the department (Note that the EEC is specifically not referencing specific courses, as we recognise that there is sufficient expertise in the instructors to carry out this task):

- Identify the invariant-courses for the programme: some concepts are core (say, data structures and algorithms) and are “trend-independent”. Define and describe core courses in those invariant terms. For learning about “graphs and graph algorithms”, it is immaterial if the language of instruction for the exercises is C, Java, Ada, or MOS6502-assembler.
- For “trend-following courses”, define and describe those around the abstract principles, to make them into invariant courses. A course in “Java Programming” — like a course in “Smalltalk Programming” — may have an expiration date. A course in “Principles and Practice of Object-Oriented Programming” is less likely to become irrelevant, and can as description have “This course introduces the students to the principles of Object Oriented Analysis, Design, and Programming using state-of-the-art Object Oriented programming languages”. Another example of this would be a course in “Software Engineering” — an invariant topic, whose invariant description could be something to the effect of “Introduces the students to the history and field of software engineering processes, and provides specific training of the prevalent software engineering methodologies used in the software industry”. To give but another example, buzzwords have over the past 5 years changed from “ML” through “AI” to “GenAI” — yet, it is possible to define an invariant course of “Decision Support Systems and Machine Intelligence” which can capture everything from rule-based system through Bayesian Inference models and to LLMs.
- One approach to the two previous top-level bullet points — and, again, without the EEC pretending that this is the preferred approach and without prescribing its application — could be through a particularly granular application of the “competency-based learning” framework:
 - Inquiring among the stakeholders of the programme (faculty, industrial advisory board, recent graduates, current students) which competencies are sought, at a very detailed level (which programming languages? Which communications protocols? Which ML systems? Which cloud platforms?, ...)
 - Grouping these “competencies” into coherent and logical blocks — and identifying prerequisite blocks for these.
 - Then, mapping those to courses — existing or new — as a way of identifying the viability of existing courses, identifying competencies that need to be added to existing courses, identifying when a “group of competencies” are scattered among existing courses (or, disparate competencies are concentrated in an existing course) and quantifying the need for creation of new courses
 - Finally, for each of these, generalise the denomination and description to both be invariant: focusing on the principles, not the “buzzword”
- The goal of the above is to enable a technological evolution to be rapidly added to the curriculum without requiring a reaccreditation action. If you have a course called “LLM and GenAI”, or even “ML and AI” then — when the next digital quantum leap called GenEUC occurs thanks to the research in your department at EUC — that course would become defunct — but a course called “Decision Support Systems and Machine Intelligence” would not since it can seamlessly integrate GenEUC as the current “Predominant technology for Machine Intelligence”

- The EEC insists that the above is not intended to be prescriptive — but, rather, to encourage the department to be creative and visionary in seeking to satisfy both the requirements for accreditation, and for training its graduates to be more than conversant with the latest evolutions in the field of computer science.

Areas of improvement and recommendations for Master

- See recommendations for the Bachelor programme — all of which apply here.
- In addition the EEC recommends that the programme considers ways of making the “research project” mandatory in the programme, since it is an asset to students for their future (be that towards a PhD or in industry). With the objective being that this should be done without compromising the ability of students to do “electives”, one way of accomplishing this could be to consolidate current courses into one, to enable both keeping the electives, and making the research project into a mandatory Masters Thesis. For example, the department offers one course in “Operating Systems” and another in “Computer Architectures” whereas many MSc programmes in Computer Science consolidate those into a single “Compute Architectures and Operating Systems”.
- The programme being a “conversion program”, part of its appeal to prospective students may be to allow professionals from other domains to “introduce CS into their world”. To this end, the EEC wonders if it would aid in the “marketability” of the programme — and thus address the surprisingly low student intake — to refocus some courses.
 - For example, many non-CS domains still require accessing, compiling, and consolidating data from different sources (IoT sensors, SQL databases, REST APIs, or Web-scraping) or providing data-as-a-service using the same technologies. Thus rather than having the course in “Database and Information Management Systems” be a traditional “how to use and administer SQL databases” course, perhaps an orientation towards “How to retrieve, and provide, information across heterogenous data sources” would be an interesting evolution?
- Also, to improve enrolments in the programme — especially from abroad — the EEC would like to encourage that the department be accorded efforts and attention from the marketing department, commensurate with the efforts and attention that Medical and Life Sciences receive. To give an objective metric: the number of clicks on the EUC webpage to reach Medical and Life Sciences programs is 1 — whereas half a dozen is required to reach the MSc in Computer Science.

Areas of improvement and recommendations for Doctorate

- The EEC recommends that, in alignment with international standards — the doctoral programme be presented as developing “deep, cutting-edge, specialist skills and knowledge”, and not “broad knowledge about CS”, which is the objective of the BSc and MSc programmes. the current presentation reads like the doctorate is “a second masters” — a doctoral graduate does not know how to “understand research” and “use existing tools and methods” but rather is trained to push the state of the art of human knowledge forward, and to develop new tools and methods.
- The EEC recommends to clarify the programme structure and orientation to avoid that it appears as an “US PhD Light”. For example by having less “coursework” during semester 1 and by getting rid of the “comprehensive exam” — and, in its place, have the students develop a document which contains:
 - A “for public consumption” introduction to the topic of their Thesis Proposal
 - A rigorous and exhaustive literature and methodology “state of the Art”
 - A refined “Problem Statement” positioning the topic of the thesis proposal with respect to the state of the art
- This may result in publication of a “review article” — as is often the case in other institutions — thus contributing to the scientific output of the department, as well as be a strong first chapter for the PhD thesis.
- The EEC wonders if establishing a formal “training programme” for PhD supervisors might be beneficial: a lecturer completing it successfully might be an indicator of maturity for promotion to assistant professors. Such a

programme could include formal requirements of having accompanied a successful PhD graduate as co-supervisor, as well as modules on conflict resolution, pedagogics, etc., to the benefit of also the PhD students.

- Doing the math, in view of the current number of potential main PhD supervisors, and potential internal members of PhD juries, there is a strict scalability limit to the number of PhD students in computer science, that the department can host - inférieur to the ambitions of the department to enrol 10 PhD students/year. The EEC therefore recommends that efforts be made to increase the number of qualified main PhD supervisors through both recruitment of senior faculty members, and efforts to accompany current lecturers towards promotion.
- On the topic of PhD juries, in view of the ambitions of the department to extend their internationalisation and thus affirm their trajectory along European standards, the EEC wonders if the inclusion of international members in PhD juries could be a consideration? A side-benefit from inviting an international professor to be on a PhD jury is, that it's an occasion to expose (BSc, MSc, and PhD students) to an international guest lecture
- While an ad-hoc day-to-day or week-to-week interaction between student and supervisors is natural, and dependent on the topic and the individuals, the EEC would like to encourage that some formalised quality control safeguards be considered. This, especially, in view that each PhD student has a supervisory team with not all members being resident at the department. This could be as simple as to codify what the department has collectively adopted as "best practices" during the 5 years of existence of the doctoral programme. It could also be the introduction of a formal expectation to maintain of a "lab notebook" — recording progress, ideas, envisioned tasks and milestone between the student and the supervisors. Such a "lab notebook", shared among the student and the supervisory team, could also be a tool to use with an external review committee every 6 or 12 months. The EEC does not mean to prescribe a specific modus-operandi but rather encourage that a protocol for PhD supervision QA be developed and documented to aid in the introduction of future PhD supervisors in view of supporting the growth-ambitions that the department has expressed for the program.
- The department has an admirable ambition to grow the PhD programme — both for the sake of the PhD students, but also for faculty development and for increase of the scientific production to the benefit of the university, department, and programme international rankings. One of the identified obstacles to this is the low number of PhD fellowships available reducing the potential candidate pool. Thus, globally, the EEC encourages that the University helps the department be able to provide an increased number of PhD fellowships. Among the different options, the EEC would like to encourage:
 - Reflections on creation of PhD fellowships through TAships - which we believe might be a win-win-win-win situation:
 - The availability of PhD fellowships will attract more, and possibly more qualified, candidates who do NOT need to work conjointly with their studies, and can be resident at EUC — thus hopefully contribute with more, and more significant, scientific publications to the benefit of university rankings.
 - A PhD student acting as a TA will allow relieving a faculty member from potentially repetitive work not necessarily his or her advanced skills: grading exams or assignments, monitoring lab exercises, proctoring exams — thus liberating the faculty member to write grant proposals (attracting funding for the university, and for more PhD students), and for conducting breaking scientific research, hopefully leading to increased publications and thus be to the benefit of the university rankings.
 - If PhD students act as TAs, the proximity between faculty and PhD student increases, potentially creating unexpected collaborations and scientific publications.
 - Finally, for PhD students seeking faculty positions internationally, not having experience as a TA is often a significant handicap. Thus offering this opportunity for PhD students renders the PhD graduates more attractive on the academic labour market — and, thereby, renders the PhD programme at the Department of Computer Science and Engineering more attractive.

- Reflections on, and encouragement for, making all faculty seeking project funding for PhD students — for example, through matching funding: a faculty member attracting project funding for 1 PhD student would be allowed to offer TAships allowing to “stretch” that funding to recruitment of 2 PhD students

Please select what is appropriate for each of the following sub-areas:

Sub-area	<i>Non-compliant</i>		
	<i>Bachelor</i>	<i>Master</i>	<i>Doctorate</i>
1.1 Policy for quality assurance	Partially Compliant	Partially Compliant	Partially Compliant
1.2 Design, approval, on-going monitoring and review	Partially Compliant	Partially Compliant	Compliant
1.3 Public information	Partially Compliant	Partially Compliant	Partial Compliant
1.4 Information management	Compliant	Compliant	Compliant

2. Student – centred learning, teaching and assessment (ESG 1.3)

Sub-areas

1. Process of teaching and learning and student-centred teaching methodology
2. Practical training
3. Student assessment

2.1 Process of teaching and learning and student-centred teaching methodology

Standards

- *The process of teaching and learning supports students' individual and social development.*
- *The process of teaching and learning is flexible, considers different modes of delivery, where appropriate, uses a variety of pedagogical methods and facilitates the achievement of planned learning outcomes.*
- *Students are encouraged to take an active role in creating the learning process.*
- *The implementation of student-centered learning and teaching encourages a sense of autonomy in the learner, while ensuring adequate guidance and support from the teacher.*
- *Teaching methods, tools and material used in teaching are modern, effective, support the use of modern educational technologies and are regularly updated.*
- *Mutual respect within the learner-teacher relationship is promoted.*
- *The implementation of student-centred learning and teaching respects and attends to the diversity of students and their needs, enabling flexible learning paths.*
- *Appropriate procedures for dealing with students' complaints regarding the process of teaching and learning are set.*

2. Practical training

Standards

- *Practical and theoretical studies are interconnected.*
- *The organisation and the content of practical training, if applicable, support achievement of planned learning outcomes and meet the needs of the stakeholders.*

3. Student assessment

Standards

- *Assessment is consistent, fairly applied to all students and carried out in accordance with the stated procedures.*
- *Assessment is appropriate, transparent, objective and supports the development of the learner.*
- *The criteria for and method of assessment, as well as criteria for marking, are published in advance.*
- *Assessment allows students to demonstrate the extent to which the intended learning outcomes have been achieved. Students are given feedback, which, if necessary, is linked to advice on the learning process.*
- *Assessment, where possible, is carried out by more than one examiner.*
- *A formal procedure for student appeals is in place.*
- *Assessors are familiar with existing testing and examination methods and receive support in developing their own skills in this field.*
- *The regulations for assessment take into account mitigating circumstances.*

Findings

A short description of the situation in the Higher Education Institution (HEI), based on elements from the application for external evaluation and on findings from the onsite visit.

Findings for Bachelor

- The programme is the “flagship programme” for the Department, and is taught in-person and in English.
- The detailed syllabus is available online for each course, with procedures in place to update it at the start of the course. The students are assessed on their performance in assignments, participation in the class, and final exams in each course. The breakdown of their for a course is clearly indicated in the syllabus.
- Mid-term and final exams are graded solely by the instructors, except in case of a grade appeal. The examination scripts are not anonymised. Course grades are reported by the instructor following a validation process which includes the department chair.
- Except for in cases of a grade appeal, midterms and exams are graded only by the instructor, and midterm and exam papers are not anonymised. Grades for these are reported by the instructor through a validation process including the department chair, and the school.
- Midterm and exam grades are supposed to be available to the students within 2 weeks — though respect of this deadline this was reported by several students to be the exception rather than the rule.
- Most courses contain a mixture of theory and application

Findings for Master

- The programme is offered in a format that enables both full-time study, and part-time study (over a longer time period) for students who are currently employed.
- The EEC were able to discuss with graduates who were both full-time and part-time students, and both categories expressed a high degree of satisfaction with the organisation of the programme.
- Most of the courses in the programme are taught by full-time faculty members, and all instructors are committed to, and demonstrated application of, student-centric learning
- Most courses are constructed with a good mixture between theoretical learning and practical exercises
- Course evaluations are based on both a final exam, graded homework, and participation, typically at a 60/30/10% weighting, though this may vary slightly between courses
- The programme contains electives, allowing the students to “shape” the profile of their degree to their ambitions, and an optional research project enabling the students to engage independently with complex and unstructured (by an instructor) problems
- The detailed syllabus is available online for each course, with procedures in place to update it at the start of the course. The students are assessed on their performance in assignments, participation in the class, and final exams in each course. The breakdown of their for a course is clearly indicated in the syllabus.
- Mid-term and final exams are graded solely by the instructors, except in case of a grade appeal. The examination scripts are not anonymised. Course grades are reported by the instructor following a validation process which includes the department chair.
- Except for in cases of a grade appeal, midterms and exams are graded only by the instructor, and midterm and exam papers are not anonymised. Grades for these are reported by the instructor through a validation process including the department chair, and the school.
- Midterm and exam grades are supposed to be available to the students within 2 weeks — though respect of this deadline this was reported by several students to be the exception rather than the rule.
- Most courses contain a mixture of theory and application

Findings for Doctorate

- The doctoral programme is assessed at three points: “comprehensive examination” “thesis proposal”, and “viva” (thesis defense)
- The “comprehensive examination” occurs after year-1, and consists of an examination of the students’ performance on three aspects: research methodology relevant to the programme of study, core areas of research relevant to the programme of study, and the area of specialisation relevant to the programme of study.
- The “comprehensive examination” can be taken twice — after which, students are not allowed to continue. In that case, they will get ECTS credits for the coursework done during year-1.
- 20-30% of the students enrolled stops / drops out before they get to the thesis proposal because they feel that they will fail. Or they do not pass
- The “thesis proposal” is prepared, presented, and validated by the department
- The thesis defense is done before a committee, constituted by faculty members from both within and external to the department.

Strengths

A list of strengths, e.g. examples of good practices, achievements, innovative solutions etc.

Strengths for Bachelor

- QA mechanisms are in place, ensuring that course syllabi are updated in advance of each course
- Course syllabi are clear and explicit about the assessment
- Validation of exams by the programme director.

Strengths for Master

- QA mechanisms are in place, ensuring that course syllabi are updated in advance of each course
- Course syllabi are clear and explicit about the assessment
- Validation of exams by the programme director.

Strengths for Doctorate

- Dedicated and available supervisory Faculty members.

Areas of improvement and recommendations

A list of problem areas to be dealt with, followed by or linked to the recommendations of how to improve the situation.

Areas of improvement and recommendations for Bachelor

- The EEC recommends considering that midterm and exam papers be graded anonymously, and that key course exams have a second grader.
- The EEC strongly urges the department to ensure that the policy of returning, in a timely manner, grades (and comments) for assignments, midterms, and exams, be systematically enforced for all courses and instructors
- The EEC received student feedback that nature of delivery of a course was heavily instructor dependent. For example, one student noted that a course they had followed was “purely theoretical with no application or labs”, whereas another student from a later year was surprised since they found that course to be “the one where I really learned to write computer programs through the extensive labs”. The EEC recommends that an effort be made to ensure consistency between sections of the same course, or between successive executions of the same course.

Areas of improvement and recommendations for Master

- The EEC recommends considering that midterm and exam papers be graded anonymously, and that key course exams have a second grader.
- The EEC strongly urges the department to ensure that the policy of returning, in a timely manner, grades (and comments) for assignments, midterms, and exams, be systematically enforced for all courses and instructors

Areas of improvement and recommendations for Doctorate

- The EEC finds that the “thesis proposal” as part of the entry requirements is incorrectly named. The EEC recommends that it be renamed as a “Statement of Purpose” or such like, so as not to be confused with the thesis proposal required at the end of Semester 2.
- The comprehensive examinations is an unnecessary hurdle for progression to the research stage as this seems like an import from the North American system without the courses which need to be taken in lead up to the equivalent thereof (the “Quals”).

Please select what is appropriate for each of the following sub-areas:

Sub-area	Non-compliant/ Partially Compliant/Compliant			
	Bachelor	Master	Doctorate	
2.1	Process of teaching and learning and student-centred teaching methodology	Compliant	Compliant	Compliant
2.2	Practical training	Compliant	Compliant	Compliant
2.3	Student assessment	Partially Compliant	Partially Compliant	Compliant

3. Teaching staff (ESG 1.5)

Sub-areas

1. Teaching staff recruitment and development
2. Teaching staff number and status
3. Synergies of teaching and research

1. Teaching staff recruitment and development

Standards

- *Institutions ensure the competence of their teaching staff.*
- *Fair, transparent and clear processes for the recruitment and development of the teaching staff are set up.*
- *Teaching staff qualifications are adequate to achieve the objectives and planned learning outcomes of the study programme, and to ensure quality and sustainability of the teaching and learning.*
- *The teaching staff is regularly engaged in professional and teaching-skills training and development.*
- *Promotion of the teaching staff takes into account the quality of their teaching, their research activity, the development of their teaching skills and their mobility.*
- *Innovation in teaching methods and the use of new technologies is encouraged.*
- *Conditions of employment that recognise the importance of teaching are followed.*
- *Recognised visiting teaching staff participates in teaching the study programme.*

2. Teaching staff number and status

Standards

- *The number of the teaching staff is adequate to support the programme of study.*
- *The teaching staff status (rank, full/part time) is appropriate to offer a quality programme of study.*
- *Visiting staff number does not exceed the number of the permanent staff.*

3. Synergies of teaching and research

Standards

- *The teaching staff collaborate in the fields of teaching and research within the HEI and with partners outside (practitioners in their fields, employers, and staff members at other HEIs in Cyprus or abroad).*
- *Scholarly activity to strengthen the link between education and research is encouraged.*
- *The teaching staff publications are within the discipline.*
- *Teaching staff studies and publications are closely related to the programme's courses.*
- *The allocation of teaching hours compared to the time for research activity is appropriate.*

You may also consider the following questions:

- *How are the members of the teaching staff supported with regard to the development of their teaching skills? How is feedback given to members of the*

Findings

A short description of the situation in the Higher Education Institution (HEI), based on elements from the application for external evaluation and on findings from the onsite visit.

Findings for Bachelor

- The EEC considered the submitted documentation and met with staff to understand the approach on how the Institution recruits, appoints, inducts and develops teaching staff in fulfilling their duties including the delivery of high-quality teaching, the maintaining of quality standards and student experience and the undertaking of high quality research.
- The recruitment and selection process has been described in a robust and clear manner. During the first year of the appointment, staff undergo a probation process and thereafter, they are having an annual performance review. In the previous external review, the EEC proposed a simplified evaluation system to help staff with their development process. Staff also confirmed that the criteria for promotion, progression and the descriptions for the different teaching ranks are clear. Since the last period, there were limited opportunities for staff promotion.
- Staff confirmed that they are assigned a buddy to help them with their effective and efficient integration in the department. Staff confirmed the implementation of a mentoring system; a recommendation from the previous review. Some staff work in pairs in the planning and delivery of their courses. However, it has been confirmed that this is not a standard practice.
- Staff CVs are relevant and consistent with the requirements of the programme. However, the critical mass of staff is quite low for the programme requirements. There are currently 15 tenured academic staff in which none of them are full professors. Two new appointments have been sought for September 2025 in which one of them is to have a Data Science background and the other one is to have a general Computer Science (CS) background. Neither of them are to be at a Professorial rank. There is a high total of 52 part-time scientific collaborators and special scientists in which 3 of them are non-tenured adjunct CS staff and 4 CS are visiting Faculty. Teaching workloads are quite high.
- Mechanisms for student voicing are appropriate and effective. Discussions with students confirmed staff commitment and dedication to student experience.

Findings for Master

See findings for Bachelor

Findings for Doctorate

- The critical mass of research active staff is too low to cover the supervisory and examination packages' requirements,
- The target for increasing the number of PhD students to 10 per year and effectively to 30 after 3 years of operation furthers the challenge. Research active staff are working in thematic groupings and collaborate with both national and international peers.
- Publication and income generation activities vary from staff-to-staff.
- There are about 5 out of the 15 tenured staff who maintain a sustainable growth in their research activity.

Strengths

A list of strengths, e.g. examples of good practices, achievements, innovative solutions etc.

Strengths for Bachelor

- Student voicing mechanisms
- Staff commitment to provide high-quality education and training

Strengths for Master

- Student voicing mechanisms
- Staff commitment to provide high-quality education and training

Strengths for Doctorate

- Student voicing mechanisms
- Staff commitment to provide high-quality education and training

Areas of improvement and recommendations

A list of problem areas to be dealt with, followed by or linked to the recommendations of how to improve the situation.

Areas of improvement and recommendations for Bachelor

- Reduce high workload in teaching
- Produce effective staff development plans for promotion

Areas of improvement and recommendations for Master

- Reduce high workload in teaching
- Produce effective staff development plans for promotion

Areas of improvement and recommendations for Doctorate

- Reduce high workload in teaching
- Increase research capacity, *i.e.*, number of staff who maintain sustainable growth in research
- Produce effective staff development plans to support promotion based on the increased quality and quantity of publication and income generation track records

Please select what is appropriate for each of the following sub-areas:

Sub-area	<i>Non-compliant/ Partially Compliant/Compliant</i>		
	<i>Bachelor</i>	<i>Master</i>	<i>Doctorate</i>
3.1 Teaching staff recruitment and development	Partially Compliant	Partially Compliant	Partially Compliant
3.2 Teaching staff number and status	Partially Compliant	Partially Compliant	Non- Compliant
3.3 Synergies of teaching and research	Partially Compliant	Partially Compliant	Partially Compliant

4. Student admission, progression, recognition and certification (ESG 1.4)

Sub-areas

1. Student admission, processes and criteria
2. Student progression
3. Student recognition
4. Student certification

1. Student admission, processes and criteria

Standards

- *Pre-defined and published regulations regarding student admission are in place.*
- *Access policies, admission processes and criteria are implemented consistently and in a transparent manner.*

2. Student progression

Standards

- *Pre-defined and published regulations regarding student progression are in place.*
- *Processes and tools to collect, monitor and act on information on student progression, are in place.*

3. Student recognition

Standards

- *Pre-defined and published regulations regarding student recognition are in place.*
- *Fair recognition of higher education qualifications, periods of study and prior learning, including the recognition of non-formal and informal learning, are essential components for ensuring the students' progress in their studies, while promoting mobility.*
- *Appropriate recognition procedures are in place that rely on:*
 - *institutional practice for recognition being in line with the principles of the Lisbon Recognition Convention*
 - *cooperation with other institutions, quality assurance agencies and the national ENIC/NARIC centre with a view to ensuring coherent recognition across the country*

4. Student certification

Standards

- *Pre-defined and published regulations regarding student certification are in place.*
- *Students receive certification explaining the qualification gained, including achieved learning outcomes and the context, level, content and status of the studies that were pursued and successfully completed.*

Findings

A short description of the situation in the Higher Education Institution (HEI), based on elements from the application for external evaluation and on findings from the onsite visit.

Findings for Bachelor

- The BSc degree in Computer Science (worth 240 ECTS) founded in 2007 is self-described as the flagship undergraduate course, and offered in English in the traditional in-person mode over 4 years full-time.
- The admission criteria is an average grade of 'C' or above and proof of proficiency in English language.
- Students are able to transfer ECTS credits from recognised European universities.

Findings for Master

- The MSc degree in Computer Science is a conversion course intended for graduates in a scientific discipline to retrain as computer scientists.
- The students are educated in courses reflecting common knowledge in computer science:
 - Semester 1: 3 compulsory courses;
 - S2: 3 compulsory core courses;
 - S3: either 2 more elective courses, or 1 major individual project.
- The entry requirement is a Bachelor degree with an average of C or above; proficiency in the English language requirements; 2 recommendations letters; and, additional criteria determined in an interview.

Findings for Doctorate

- The entry requirements are a recognised Masters degree — with B or higher overall grades; evidence of English language proficiency recognised by language of instruction in the undergraduate and Masters courses; Research proposal; and, additional criteria determined in the interview.

Strengths

A list of strengths, e.g. examples of good practices, achievements, innovative solutions etc.

Strengths for Bachelor

- Admission process is well-defined and it is clear that the degree is awarded after collecting 240 credits over 4 years.

Strengths for Master

- The course is targeted at graduates in a numerate discipline who wish to gain a postgraduate degree in Computer Science after gaining 120 credits. The course is flexible for both full-time and part-time students.

Strengths for Doctorate

- The entry requirements for an undergraduate and Masters degree in Computer Science is in line with most international norms for entry into the Doctorate degree.
- The annual review process with a committee of 3 academics including the supervisor is standard procedure internationally.

Areas of improvement and recommendations

A list of problem areas to be dealt with, followed by or linked to the recommendations of how to improve the situation.

Areas of improvement and recommendations for Bachelor

- The programme in its current form has not evolved much since its previous evaluation the EEC recommends that it be brought up-to-date to reflect the rapid progress in the field. For example, by introduction of courses in the Internet of Things, Large Language Models, Modern Software Systems Methods (DevSecOps, MLOps), Cloud Technologies (gcp) and other platforms (tensorflow) used for developing and deploying systems today.
- Some courses such as CSE305 (Systems Programming) and Cloud Computing is a potpourri of different topics seemingly hatched together without a common theme, and the EEC recommends that the course catalogue be examined and that courses exhibiting this be clarified..
- The course entitled "Contemporary Topics" is a catch-all for any topic which can change each year. The EEC believes that this does not reflect well in the final transcript, unless the course title which reflects the content is included.
- The electives available in the final year is limited to only 2 courses, which the EEC finds to be in the lower end.

Areas of improvement and recommendations for Master

- The Masters course gives an option for either doing an individual project or 2 electives courses. The EEC finds that the individual project should be mandatory,, since a "masters thesis" is almost an expectation by both future employers, and for continuation into a PhD (for evidence: the doctoral programme at the Department expects prior research projects for admission).

Areas of improvement and recommendations for Doctorate

- The EEC finds that the "thesis proposal" as part of the entry requirements is incorrectly named. The EEC recommends that it be renamed as a "Statement of Purpose" or such like, so as not to be confused with the thesis proposal required at the end of Semester 2.
- The comprehensive examinations is an unnecessary hurdle for progression to the research stage as this seems like an import from the North American system without the courses which need to be taken in lead up to the equivalent thereof (the "Quals").

Please select what is appropriate for each of the following sub-areas:

Sub-area	Non-compliant/ Partially Compliant/Compliant		
	Bachelor	Master	Doctorate
4.1 Student admission, processes and criteria	Compliant	Compliant	Compliant
4.2 Student progression	Compliant	Compliant	Compliant
4.3 Student recognition	Compliant	Compliant	Compliant

4.4	Student certification	Compliant	Compliant	Compliant
------------	-----------------------	-----------	-----------	-----------

5. Learning resources and student support (ESG 1.6)

Sub-areas

1. Teaching and Learning resources
2. Physical resources
3. Human support resources
4. Student support

5.1 Teaching and Learning resources

Standards

- *Adequate and readily accessible teaching and learning resources (teaching and learning environments, materials, aids and equipment) are provided to students and support the achievement of objectives in the study programme.*
- *Adequacy of resources is ensured for changing circumstances (change in student numbers, etc.).*
- *All resources are fit for purpose.*
- *Student-centred learning and flexible modes of learning and teaching, are taken into account when allocating, planning and providing the learning resources.*

5.2 Physical resources

Standards

- *Physical resources, i.e. premises, libraries, study facilities, IT infrastructure, are adequate to support the study programme.*
- *Adequacy of resources is ensured for changing circumstances (change in student numbers, etc.).*
- *All resources are fit for purpose and students are informed about the services available to them.*

5.3 Human support resources

Standards

- *Human support resources, i.e. tutors/mentors, counsellors, other advisers, qualified administrative staff, are adequate to support the study programme.*
- *Adequacy of resources is ensured for changing circumstances (change in student numbers, etc.).*
- *All resources are fit for purpose and students are informed about the services available to them.*

5.4 Student support

Standards

- *Student support is provided covering the needs of a diverse student population, such as mature, part-time, employed and international students and students with special needs.*
- *Students are informed about the services available to them.*
- *Student-centred learning and flexible modes of learning and teaching, are taken into account when allocating, planning and providing student support.*
- *Students' mobility within and across higher education systems is encouraged and supported.*

Findings

A short description of the situation in the Higher Education Institution (HEI), based on elements from the application for external evaluation and on findings from the onsite visit.

Findings for Bachelor

- The students have access to the computing systems with adequate seats with licenses for software used in teaching such as Matlab.
- The first year programming course uses Lego Mindstorm to introduce C language programming in an engaging manner.
- The University has good library facilities with access to recommended text books, journals and conference proceedings.
- The students found the teaching staff dedicated, accessible and very helpful.
- The University takes mental health seriously and have a dedicated unit staff with trained personnel to counsel the students and staff.
- All the buildings in the campus had ramps for easy access with students in wheelchair.
- The students had access to a well-stocked cafeteria for relaxing away from work and in between lectures

Findings for Master

- The MSc in Computer Science degree was the first in Cyprus to offer a conversion course and is popular with students with a numerate first degree who wish to re-train with a Masters degree in Computer Science to enter this vibrant job market, or those to are currently working in this area and wish to obtain a formal degree for promotion within the company or elsewhere.
- The students can be involved in individual projects in collaboration with local companies who can be potential employers.
- The University takes mental health seriously and have a dedicated unit staff with trained personnel to counsel the students and staff.
- All the buildings in the campus had ramps for easy access with students in wheelchair.
- The students had access to a well-stocked cafeteria for relaxing away from work and in between lectures.
- The University has good library facilities with access to recommended text books, journals and conference proceedings.
- The students found the teaching staff dedicated, accessible and very helpful.

Findings for Doctorate

- The students had a supervisory team with annual monitoring of their progress.
- The students had access to travel grants for presenting research papers at conferences.
- The students have access to the computing systems with adequate seats with licenses for software used in research such as Matlab.
- All the buildings in the campus had ramps for easy access with students in wheelchair.
- The students had access to a well-stocked cafeteria for relaxing away from research.

Strengths

A list of strengths, e.g. examples of good practices, achievements, innovative solutions etc.

Strengths for Bachelor

- Well-resourced programme with access to library, computing resources and dedicated teaching staff and mental health counselling in a campus for wheelchair bound students.

Strengths for Master

- A trail blazer conversion Masters course with access to library, computing resources and dedicated teaching staff and mental health counselling in a campus for wheelchair bound students.

Strengths for Doctorate

- Access to library, computing resources, travel grants to conferences and dedicated teaching staff and mental health counselling in a campus for wheelchair bound students.

Areas of improvement and recommendations

A list of problem areas to be dealt with, followed by or linked to the recommendations of how to improve the situation.

Areas of improvement and recommendations for Bachelor

- The EEC recommends acquisition of GPU clusters for compute-intensive projects and courses, especially in view of the increased application of Machine Learning

Areas of improvement and recommendations for Master

- The EEC recommends acquisition of GPU clusters for compute-intensive projects and courses, especially in view of the increased application of Machine Learning

Areas of improvement and recommendations for Doctorate

- The EEC recommends acquisition of GPU clusters for compute-intensive projects and courses, especially in view of the increased application of Machine Learning

Please select what is appropriate for each of the following sub-areas:

Sub-area	<i>Non-compliant/ Partially Compliant/Compliant</i>		
	<i>Bachelor</i>	<i>Master</i>	<i>Doctorate</i>
5.1 Teaching and Learning resources	Compliant	Compliant	Compliant
5.2 Physical resources	Compliant	Compliant	Compliant
5.3 Human support resources	Compliant	Compliant	Compliant
5.4 Student support	Compliant	Compliant	Compliant

6. Additional for doctoral programmes (ALL ESG)

Sub-areas

1. Selection criteria and requirements
2. Proposal and dissertation
3. Supervision and committees

1. Selection criteria and requirements

Standards

- *Specific criteria that the potential students need to meet for admission in the programme, as well as how the selection procedures are made, are defined.*
- *The following requirements of the doctoral degree programme are analysed and published:*
 - *the stages of completion*
 - *the minimum and maximum time of completing the programme*
 - *the examinations*
 - *the procedures for supporting and accepting the student's proposal*
 - *the criteria for obtaining the Ph.D. degree*

2. Proposal and dissertation

Standards

- *Specific and clear guidelines for the writing of the proposal and the dissertation are set regarding:*
 - *the chapters that are contained*
 - *the system used for the presentation of each chapter, sub-chapters and bibliography*
 - *the minimum word limit*
 - *the binding, the cover page and the prologue pages, including the pages supporting the authenticity, originality and importance of the dissertation, as well as the reference to the committee for the final evaluation*
- *There is a plagiarism check system. Information is provided on the detection of plagiarism and the consequences in case of such misconduct.*
- *The process of submitting the dissertation to the university library is set.*

3. Supervision and committees

Standards

- *The composition, the procedure and the criteria for the formation of the advisory committee (to whom the doctoral student submits the research proposal) are determined.*
- *The composition, the procedure and the criteria for the formation of the examining committee (to whom the doctoral student defends his/her dissertation), are determined.*
- *The duties of the supervisor-chairperson and the other members of the advisory committee towards the student are determined and include:*
 - *regular meetings*
 - *reports per semester and feedback from supervisors*
 - *support for writing research papers*
 - *participation in conferences*

Findings

A short description of the situation in the Higher Education Institution (HEI), based on elements from the application for external evaluation and on findings from the onsite visit.

- The selection and admission at the PhD level is conducted in a standard way. Applications are submitted throughout the year. The process involves both the admissions which confirm the typical requirements and the teaching staff which invite the applicant for an interview to assess the quality and the appropriateness of the research proposal. Typical requirements are no different from any other place and these do include a Bachelors degree, a Masters degree, English language proficiency, unless the candidate has already completed a degree which is using English language as the medium of instruction. An interview with potential academic supervisors having the required subject expertise completes the decision-making process. The department is also admitting Science students undertaking multi-disciplinary computation.
- The programme is a combination of courses at the first year leading to the production of a detailed proposal and a thesis thereafter. Students who failed twice are awarded credits. The scientific quality of the detailed proposal is ensured through a supervisory team consisting of the first supervisor and 2 co-advisors. Co-advisors can be other academics (internal or external) or from industry. Supervisors do provide feedback at regular time intervals (i.e. twice a month). Feedback and meeting minutes with actions are not formally recorded for auditing purposes. The minimum registration period is 3 years and the maximum including the part-time mode is 8 years. There is also use of plagiarism detection system,
- The scientific quality of the thesis is ensured through a standard examination committee involving a local chair, an internal examiner and an external examiner. The candidate is encouraged to publish their work. The research results are also available to the society via the use of the outputs in the real-world. The value of the obtained degree continues to be high as demonstrated through the employability of the programme graduates.
- There is a lack of subject specific leadership. There is a few (about 5) CS staff maintaining sustainable growth. The combination of low income generation activity together with the lack of internally sponsored seeds awards cause increased interaction with other departments both internally and externally to the university. Finally, the multi-disciplinary innovative approach requires carefully planning and execution (especially at doctoral level) to ensure that originality at the CS field is kept and demonstrable evidence exist at both the thesis and publications. This is particularly important for the degree to receive recognition and equivalence from the respective governmental authority, the registry body of recognised degrees (i.e. DOATAP, DIPAE, etc).

Strengths

A list of strengths, e.g. examples of good practices, achievements, innovative solutions etc.

- Member of leading research initiatives, e.g., Open Science, EUA-CDE etc,
- Industry collaborations and external co-advisors
- Multi-disciplinary doctoral projects

Areas of improvement and recommendations

A list of problem areas to be dealt with, followed by or linked to the recommendations of how to improve the situation.

- Produce and execute a staff development strategy to increase the limited number of research active staff who act as supervisors/examiners and maintain sustainable growth

- Formalise recording options for feedback capturing and communication at supervisory meetings and progress
- Increase the limited number of PhD research studentships
- Amend the examination form to reflect the inclusion of the primary and secondary subject fields of multi-disciplinary PhD these

Please select what is appropriate for each of the following sub-areas:

Sub-areas	<i>Non-compliant/ Partially Compliant/ Compliant</i>
6.1 Selection criteria and requirements	Compliant
6.2 Proposal and dissertation	Compliant
6.3 Supervision and committees	Partially Compliant

D. Conclusions and final remarks

Please provide constructive conclusions and final remarks, which may form the basis upon which improvements of the quality of each programme of study under review may be achieved, with emphasis on the correspondence with the EQF.

The EEC recognises the quality of the educational programmes on offer, as evidenced by both the student satisfaction, and by the documented employability of graduates.

Notwithstanding, the EEC has found that in particular the flagship programme of the department - the BSc in Computer Science - is in need of refreshing, to ensure the coherency of each course, and the currency of the programme.

The EEC finds that the MSc programme constitutes an innovative “conversion programme”, allowing numerate STEM(M) graduates to convert to CS postgraduates — and one student’s testimony described it as “life changing”. The EEC strongly recommends that within this programme, the research project is made mandatory whilst the electives are maintained — which may be enabled by revising and consolidating the core courses.

Regarding the doctoral programme, the EEC applauds the initiative, and strongly encourages that the Department rationalises its structure, notably by removing the “comprehensive exam” and reorganising the preceding coursework to be better aligned with the PhD thesis project. The EEC also recognises that the Department needs reinforcements in terms of staff qualified to supervise PhD students, if it is to be able to attain its ambitions of admitting 10 PhD-students per year — and consequently strongly encourages recruitment of senior faculty members, and career advancement for current faculty members.

Overall the EEC finds that the Department, the faculty members strive to attain high quality in their offerings. However, the EEC also observed that teaching and research pressures on the faculty members has implied that they have not had the head-space to plan effectively the future strategies for the Department and the programmes. Consequently, the final message is that the department should prioritise the recommendations in this report in terms of their importance, and act on them in a timely manner.

E. Signatures of the EEC

Name	Signature
Thomas Heide Clausen	
Damal K. Arvind	
Nik Bessis	
Yiannis Zapitis	
Paraskevas Kyriacou	

Date: 2025-05-18

