
*One hour out of the three is normally devoted to laboratory-based programming exercises. 
 

Course Title Software Reuse 

Course Code WSS553 

Course Type Specialization (Elective) 

Level Master (2nd Cycle) 

Year / Semester 2 or 3 

Teacher’s Name Achilleas Achilleos, PhD 

ECTS 10 Lectures / 
week 

3 Laboratories/week 0 

Course Purpose The aim of this course is to provide students with critical understanding 
of the technology, issues and challenges of software reuse at various 
levels. Specific focus in the course is dedicated to software reuse in 
web-based systems accessible via mobile devices. The course will 
enable students to practice software reuse at various levels, with 
different programming languages and on different platforms. In specific, 
the use of Java and HTML5 technologies will provide the capability to 
experience and practice software reuse on both desktop and mobile 
platforms, as well as at different levels such as object-oriented 
programming, component-based software development, middleware- 
based development, WS*-stack services, REST services and model- 
driven engineering. Finally, management of code repositories is 
introduced at the last week. In overall, the objective of the course is to 
enhance critical awareness, promote practical thinking and reasoning to 
solve practical problems through the reuse of software systems. 

Learning 
Outcomes 

Upon successful completion of the course students will be able to: 

• Understand the concepts, principles and methods of software reuse 
and argue on the importance of software reuse in building modern 
software systems. 

• Outline and describe the different levels of software reuse: object- 
oriented programming, component-based engineering, middleware, 
WS*-stack services, REST services and model-driven engineering. 

• Identify, analyse and reuse open-source software tools in practice 
and at different software reuse levels. 

• Gain theoretical knowledge and analytical skills to develop 
applications by employing reuse methods at code, component, 
design and models levels. 

• Distribute effectively the results of their work to other developers 
using software repositories in order to promote software reuse. 

• Describe and explain the concept of open-source software 
development and argue on the importance of software licensing. 

Prerequisites None. Corequisites None. 

Course Content 1. Introduction to Software Reuse (2 Weeks). 



*One hour out of the three is normally devoted to laboratory-based programming exercises. 
 

 - Software Reuse Key Concepts. Levels and Types of 
Software Reuse. The Software Reuse Landscape. Software 
Reuse Approaches. Reuse Benefits, Issues and Economics. 

2. Object Oriented Programming and Component Based Software 
Engineering (2 Weeks). 

- Revisiting key concepts of Object Oriented Programming 
(OOP). Practical example of reuse through OOP. Reuse 
through the Java Collections Framework. Introduction to the 
principles and concepts of Component Based Software 
Engineering (CBSE). JavaBeans: Software Reuse at the 
level of CBSE. Practical example of reuse through 
JavaBeans. 

3. Design Patterns: Reusing Best Practices to Solve Common 
Design Problems (4 Weeks). 

- Design Principles and Patterns. Design Patterns: Concepts 
and Types. Building Successful Mobile Applications using 
Design Patterns. 

4. Software Reuse via the notion of a Middleware (1 Week). 

- Motivation, definition and the role of a middleware. 
Examining a simple middleware architecture: RPC. 
Challenges in middleware design. Example: HTML5 Context 
Middleware (H5CM). 

5. Service Reusability (2 Weeks). 

- Motivation, History and Concepts. The Web Service Model. 
Web Service Standards - WS*-stack (WSDL, SOAP, XML, 
UDDI). RESTful Services. REST Motivation, Definition and 
Principles. REST Vocabulary and Concepts. REST Vs. WS*- 
stack. 

6. Model Driven Engineering (1 Week). 

- Introduction to the notion of models reuse. Unified Modelling 
Language and Domain Specific Modelling. Model-driven 
engineering and MDA architecture. Models transformation 
and code generators. 

7. Software Repositories (1 Week). 

- Definition. Reusing Software Assets. Requirements and 
Advantages of a Software Repository. The Software 
Repository Model. Main functions of a Software Repository. 
Version Control Systems. Creating and Managing a 
Software Repository. Open-Source Software Development. 
Software Licensing. 

Teaching 
Methodology 

The methodology followed in this course is structured around lectures 
and laboratory exercises, so that students gain theoretical knowledge 
as well as practical skills. The taught part of course is delivered to the 
students with the help of computer presentations. Presentations are 
available through the e-learning system for students to use in 
combination with the textbooks. Furthermore, theoretical principles are 
explained by means of specific examples and solution of specific 
problems using practical examples. The code for these software reuse 
examples and exercises is also made available in the e-learning system. 



*One hour out of the three is normally devoted to laboratory-based programming exercises. 
 

 Lectures are supplemented with supervised computer laboratories, 
which include demonstrations of taught concepts and experimentation 
with related technologies to solve specific problems via exercises. 
Hence, during laboratory sessions, students apply their gained 
knowledge and identify the principles taught in the lecture sessions by 
means of working on different tasks and solving domain-specific 
problems. The course includes a midterm test that involves both 
theoretical and critical thinking questions, as well as practical software 
reuse and programming exercises. The midterm test is undertaken 
using the e-learning system. Also, a course project is assigned to the 
students since this is a practical-oriented course. Finally, the course 
assessment is completed by means of a three-hours final exam at the 
end of the semester. 

Bibliography Textbooks: 

1. Michel Ezran, Maurizio Morisio, Colin Tully, “Practical Software 
Reuse” (Practitioner Series), Paperback: 216 pages, Publisher: 
Springer; 1st edition (April 2, 2002), Language: English, ISBN-10: 
1852335025, ISBN-13: 978-1852335021. 

2. John Vlissides, Ralph Johnson, Richard Helm, Erich Gamma, 
“Design Patterns: Elements of Reusable Object-Oriented Software”, 
Publisher: Addison-Wesley Professional, Release Date: October 
1994, ISBN: 0201633612. 

References: 

1. “Why Software Reuse has Failed and How to Make It Work for You”, 
Douglas C. Schmidt, Available Online: Link. 

2. “Design patterns, the big picture, Part 1: Design pattern history and 
classification”, Jeff Friesen, JavaWorld | Nov 21, 2012, Available 
Online: Link. 

3. “Design patterns, the big picture, Part 2: Gang-of-four classics 
revisited”, Jeff Friesen, JavaWorld | Dec 26, 2012, Available Online: 
Link. 

4. “Design patterns, the big picture, Part 3: Beyond software design 
patterns”, Jeff Friesen, JavaWorld | Nov 21, 2012, Available Online: 
Link. 

5. “Mobile UI Design Patterns – A Deeper Look At The Hottest Apps 

Today”, Dominik Pacholczyk, UXPin, Available Online: Link. 

Assessment 
• Midterm Test: 20% 

• Course Project: 30% 
• Final Exam: 50% 

Language English. 

 

http://www1.cse.wustl.edu/~schmidt/reuse-lessons.html
http://www.javaworld.com/article/2078665/core-java/design-patterns--the-big-picture--part-1--design-pattern-history-and-classification.html
http://www.javaworld.com/article/2078675/core-java/design-patterns--the-big-picture--part-2--gang-of-four-classics-revisited.html
http://www.javaworld.com/article/2078665/core-java/design-patterns--the-big-picture--part-1--design-pattern-history-and-classification.html
https://s3.amazonaws.com/uxpin/uxpin_mobile_ui_design_patterns_2014.pdf

